330 research outputs found

    Constrained large solutions to Leray's problem in a distorted strip with the Navier-slip boundary condition

    Full text link
    In this paper, we will solve the Leray's problem for the stationary Navier-Stokes system in a 2D infinite distorted strip with the Navier-slip boundary condition. The existence, uniqueness, regularity and asymptotic behavior of the solution will be investigated. Moreover, we discuss how the friction coefficient affects the well-posedness of the solution. Due to the validity of the Korn's inequality, all constants in each a priori estimate are independent of the friction coefficient. The main novelty is the total flux of the velocity can be relatively large (proportional to the {\it slip length}) when the friction coefficient of the Navier-slip boundary condition is small, which is essentially different from the 3D case.Comment: 45 pages. arXiv admin note: text overlap with arXiv:2204.10578. A remark is added to state the independent accomplishment of solving the 2D Leray's problem with the Navier-slip boundary condition by our group and Professor Chunjing Xie's grou

    Pre-RMSNorm and Pre-CRMSNorm Transformers: Equivalent and Efficient Pre-LN Transformers

    Full text link
    Transformers have achieved great success in machine learning applications. Normalization techniques, such as Layer Normalization (LayerNorm, LN) and Root Mean Square Normalization (RMSNorm), play a critical role in accelerating and stabilizing the training of Transformers. While LayerNorm recenters and rescales input vectors, RMSNorm only rescales the vectors by their RMS value. Despite being more computationally efficient, RMSNorm may compromise the representation ability of Transformers. There is currently no consensus regarding the preferred normalization technique, as some models employ LayerNorm while others utilize RMSNorm, especially in recent large language models. It is challenging to convert Transformers with one normalization to the other type. While there is an ongoing disagreement between the two normalization types, we propose a solution to unify two mainstream Transformer architectures, Pre-LN and Pre-RMSNorm Transformers. By removing the inherent redundant mean information in the main branch of Pre-LN Transformers, we can reduce LayerNorm to RMSNorm, achieving higher efficiency. We further propose the Compressed RMSNorm (CRMSNorm) and Pre-CRMSNorm Transformer based on a lossless compression of the zero-mean vectors. We formally establish the equivalence of Pre-LN, Pre-RMSNorm, and Pre-CRMSNorm Transformer variants in both training and inference. It implies that Pre-LN Transformers can be substituted with Pre-(C)RMSNorm counterparts at almost no cost, offering the same arithmetic functionality along with free efficiency improvement. Experiments demonstrate that we can reduce the training and inference time of Pre-LN Transformers by up to 10%.Comment: 15 pages, 5 tables, code available at https://github.com/ZixuanJiang/pre-rmsnorm-transforme

    The Influencing Path of Public Engaging Intention in the Value Co-Creation of E-Gov Services:An Empirical Investigation

    Get PDF
    The wide acceptability of ICTs and social media enriches the delivery platform of e-gov services (EGS). EGS is an important interaction and collaboration channel between the government and the public. The public can conveniently and timely explore problems, provide ideas, and design solutions to improve EGS. The roles of the public changed to active, informed partners or co- creators of EGS innovation and problem solving. This study builds the influence factor model on public engaging intention of value co-creation for EGS based on technology acceptance theory, trust theory, and motivation theory to explore impact factors and impact paths. Path analysis interpreted how the public would accept and adopt value co-creation behavior for EGS. This study also introduced a comprehensive picture of the new paradigm of public service value creation in an era of increasing user dominance, that is, the public

    Multi-view Inverse Rendering for Large-scale Real-world Indoor Scenes

    Full text link
    We present a multi-view inverse rendering method for large-scale real-world indoor scenes that reconstructs global illumination and physically-reasonable SVBRDFs. Unlike previous representations, where the global illumination of large scenes is simplified as multiple environment maps, we propose a compact representation called Texture-based Lighting (TBL). It consists of 3D meshs and HDR textures, and efficiently models direct and infinite-bounce indirect lighting of the entire large scene. Based on TBL, we further propose a hybrid lighting representation with precomputed irradiance, which significantly improves the efficiency and alleviate the rendering noise in the material optimization. To physically disentangle the ambiguity between materials, we propose a three-stage material optimization strategy based on the priors of semantic segmentation and room segmentation. Extensive experiments show that the proposed method outperforms the state-of-the-arts quantitatively and qualitatively, and enables physically-reasonable mixed-reality applications such as material editing, editable novel view synthesis and relighting. The project page is at https://lzleejean.github.io/TexIR.Comment: The project page is at: https://lzleejean.github.io/TexI

    Photonic Floquet time crystals

    Full text link
    The public and scientists constantly have different perspectives. While on a time crystal, they stand in line and ask: What is a time crystal? Show me a material that is spontaneously crystalline in time? This study synthesizes a photonic material of Floquet time crystals and experimentally observes its indicative period-2T beating. We explicitly reconstruct a discrete time-crystalline ground state and reveal using an appropriately-designed photonic Floquet simulator the rigid period-doubling as a signature of the spontaneous breakage of the discrete time-translational symmetry. Unlike the result of the exquisite many-body interaction, the photonic time crystal is derived from a single-particle topological phase that can be extensively accessed by many pertinent nonequilibrium and periodically-driven platforms. Our observation will drive theoretical and technological interests toward condensed matter physics and topological photonics, and demystify time crystals for the non-scientific public.Comment: 39 pages, 5 figures, supplementary materials, 6 suppl. figure

    An Image Dataset for Benchmarking Recommender Systems with Raw Pixels

    Full text link
    Recommender systems (RS) have achieved significant success by leveraging explicit identification (ID) features. However, the full potential of content features, especially the pure image pixel features, remains relatively unexplored. The limited availability of large, diverse, and content-driven image recommendation datasets has hindered the use of raw images as item representations. In this regard, we present PixelRec, a massive image-centric recommendation dataset that includes approximately 200 million user-image interactions, 30 million users, and 400,000 high-quality cover images. By providing direct access to raw image pixels, PixelRec enables recommendation models to learn item representation directly from them. To demonstrate its utility, we begin by presenting the results of several classical pure ID-based baseline models, termed IDNet, trained on PixelRec. Then, to show the effectiveness of the dataset's image features, we substitute the itemID embeddings (from IDNet) with a powerful vision encoder that represents items using their raw image pixels. This new model is dubbed PixelNet.Our findings indicate that even in standard, non-cold start recommendation settings where IDNet is recognized as highly effective, PixelNet can already perform equally well or even better than IDNet. Moreover, PixelNet has several other notable advantages over IDNet, such as being more effective in cold-start and cross-domain recommendation scenarios. These results underscore the importance of visual features in PixelRec. We believe that PixelRec can serve as a critical resource and testing ground for research on recommendation models that emphasize image pixel content. The dataset, code, and leaderboard will be available at https://github.com/westlake-repl/PixelRec

    Voxurf: Voxel-based Efficient and Accurate Neural Surface Reconstruction

    Full text link
    Neural surface reconstruction aims to reconstruct accurate 3D surfaces based on multi-view images. Previous methods based on neural volume rendering mostly train a fully implicit model with MLPs, which typically require hours of training for a single scene. Recent efforts explore the explicit volumetric representation to accelerate the optimization via memorizing significant information with learnable voxel grids. However, existing voxel-based methods often struggle in reconstructing fine-grained geometry, even when combined with an SDF-based volume rendering scheme. We reveal that this is because 1) the voxel grids tend to break the color-geometry dependency that facilitates fine-geometry learning, and 2) the under-constrained voxel grids lack spatial coherence and are vulnerable to local minima. In this work, we present Voxurf, a voxel-based surface reconstruction approach that is both efficient and accurate. Voxurf addresses the aforementioned issues via several key designs, including 1) a two-stage training procedure that attains a coherent coarse shape and recovers fine details successively, 2) a dual color network that maintains color-geometry dependency, and 3) a hierarchical geometry feature to encourage information propagation across voxels. Extensive experiments show that Voxurf achieves high efficiency and high quality at the same time. On the DTU benchmark, Voxurf achieves higher reconstruction quality with a 20x training speedup compared to previous fully implicit methods

    ShareGPT4V: Improving Large Multi-Modal Models with Better Captions

    Full text link
    In the realm of large multi-modal models (LMMs), efficient modality alignment is crucial yet often constrained by the scarcity of high-quality image-text data. To address this bottleneck, we introduce the ShareGPT4V dataset, a pioneering large-scale resource featuring 1.2 million highly descriptive captions, which surpasses existing datasets in diversity and information content, covering world knowledge, object properties, spatial relationships, and aesthetic evaluations. Specifically, ShareGPT4V originates from a curated 100K high-quality captions collected from advanced GPT4-Vision and has been expanded to 1.2M with a superb caption model trained on this subset. ShareGPT4V first demonstrates its effectiveness for the Supervised Fine-Tuning (SFT) phase, by substituting an equivalent quantity of detailed captions in existing SFT datasets with a subset of our high-quality captions, significantly enhancing the LMMs like LLaVA-7B, LLaVA-1.5-13B, and Qwen-VL-Chat-7B on the MME and MMBench benchmarks, with respective gains of 222.8/22.0/22.3 and 2.7/1.3/1.5. We further incorporate ShareGPT4V data into both the pre-training and SFT phases, obtaining ShareGPT4V-7B, a superior LMM based on a simple architecture that has remarkable performance across a majority of the multi-modal benchmarks. This project is available at https://ShareGPT4V.github.io to serve as a pivotal resource for advancing the LMMs community.Comment: Project: https://ShareGPT4V.github.i

    A compact butterfly-style silicon photonic-electronic neural chip for hardware-efficient deep learning

    Full text link
    The optical neural network (ONN) is a promising hardware platform for next-generation neurocomputing due to its high parallelism, low latency, and low energy consumption. Previous ONN architectures are mainly designed for general matrix multiplication (GEMM), leading to unnecessarily large area cost and high control complexity. Here, we move beyond classical GEMM-based ONNs and propose an optical subspace neural network (OSNN) architecture, which trades the universality of weight representation for lower optical component usage, area cost, and energy consumption. We devise a butterfly-style photonic-electronic neural chip to implement our OSNN with up to 7x fewer trainable optical components compared to GEMM-based ONNs. Additionally, a hardware-aware training framework is provided to minimize the required device programming precision, lessen the chip area, and boost the noise robustness. We experimentally demonstrate the utility of our neural chip in practical image recognition tasks, showing that a measured accuracy of 94.16% can be achieved in hand-written digit recognition tasks with 3-bit weight programming precision.Comment: 17 pages,5 figure
    • …
    corecore